Cart (Loading....) | Create Account
Close category search window
 

Improving X!Tandem on Peptide Identification from Mass Spectrometry by Self-Boosted Percolator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pengyi Yang ; Sch. of Inf. Technol., Univ. of Sydney, Sydney, NSW, Australia ; Jie Ma ; Penghao Wang ; Yunping Zhu
more authors

A critical component in mass spectrometry (MS)-based proteomics is an accurate protein identification procedure. Database search algorithms commonly generate a list of peptide-spectrum matches (PSMs). The validity of these PSMs is critical for downstream analysis since proteins that are present in the sample are inferred from those PSMs. A variety of postprocessing algorithms have been proposed to validate and filter PSMs. Among them, the most popular ones include a semi-supervised learning (SSL) approach known as Percolator and an empirical modeling approach known as PeptideProphet. However, they are predominantly designed for commercial database search algorithms, i.e., SEQUEST and MASCOT. Therefore, it is highly desirable to extend and optimize those PSM postprocessing algorithms for open source database search algorithms such as X!Tandem. In this paper, we propose a Self-boosted Percolator for postprocessing X!Tandem search results. We find that the SSL algorithm utilized by Percolator depends heavily on the initial ranking of PSMs. Starting with a poor PSM ranking list may cause Percolator to perform suboptimally. By implementing Percolator in a cascade learning manner, we can progressively improve the performance through multiple boost runs, enabling many more PSM identifications without sacrificing false discovery rate (FDR).

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 5 )

Date of Publication:

Sept.-Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.