Cart (Loading....) | Create Account
Close category search window

Simulating Liver Deformation during Respiration Using Sparse Local Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

A new method deforms a 3D liver mesh in an arbitrary phase of respiration. During preprocessing, the method step defines a patient-specific deformation space using two polar shapes of the liver during respiration. 3D magnetic resonance imaging captures patient livers during exhaling and inhaling. Next, using a fully automated nonrigid mesh registration, this method creates the two phases' corresponding surface meshes. Then, it defines the respiration's deformation space by extracting deformation gradients between the exhalation and inhalation meshes. At runtime, the method uses sparse local features suitably obtained from 2D ultrasound imaging to solve the constraint optimization problem that minimizes dissimilarity of deformation gradients between the target deformation and the patient-specific deformation space. Researchers used real patient data to evaluate this method, which could be applicable to image-guided tumor ablations.

Published in:

Computer Graphics and Applications, IEEE  (Volume:32 ,  Issue: 5 )

Date of Publication:

Sept.-Oct. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.