By Topic

Particle Filtering With Dependent Noise Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saikat Saha ; Department of Electrical Engineering, Division of Automatic Control, Linköping University, Linköping, Sweden ; Fredrik Gustafsson

Modeling physical systems often leads to discrete time state-space models with dependent process and measurement noises. For linear Gaussian models, the Kalman filter handles this case, as is well described in literature. However, for nonlinear or non-Gaussian models, the particle filter as described in literature provides a general solution only for the case of independent noise. Here, we present an extended theory of the particle filter for dependent noises with the following key contributions: i) The optimal proposal distribution is derived; ii) the special case of Gaussian noise in nonlinear models is treated in detail, leading to a concrete algorithm that is as easy to implement as the corresponding Kalman filter; iii) the marginalized (Rao-Blackwellized) particle filter, handling linear Gaussian substructures in the model in an efficient way, is extended to dependent noise; and, finally, iv) the parameters of a joint Gaussian distribution of the noise processes are estimated jointly with the state in a recursive way.

Published in:

IEEE Transactions on Signal Processing  (Volume:60 ,  Issue: 9 )