Cart (Loading....) | Create Account
Close category search window
 

Human-Arm-and-Hand-Dynamic Model With Variability Analyses for a Stylus-Based Haptic Interface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fu, M.J. ; Louis Stokes Cleveland Dept., Cleveland Functional Electr. Stimulation Center of Excellence, Veterans Affairs Med. Center, Cleveland, OH, USA ; Cavusoglu, M.C.

Haptic interface research benefits from accurate human arm models for control and system design. The literature contains many human arm dynamic models but lacks detailed variability analyses. Without accurate measurements, variability is modeled in a very conservative manner, leading to less than optimal controller and system designs. This paper not only presents models for human arm dynamics but also develops inter- and intrasubject variability models for a stylus-based haptic device. Data from 15 human subjects (nine male, six female, ages 20-32) were collected using a Phantom Premium 1.5a haptic device for system identification. In this paper, grip-force-dependent models were identified for 1-3-N grip forces in the three spatial axes. Also, variability due to human subjects and grip-force variation were modeled as both structured and unstructured uncertainties. For both forms of variability, the maximum variation, 95%, and 67% confidence interval limits were examined. All models were in the frequency domain with force as input and position as output. The identified models enable precise controllers targeted to a subset of possible human operator dynamics.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:42 ,  Issue: 6 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.