By Topic

Phase Constancy in a Ladder Model of Neural Dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Clara M. Ionescu ; Department of Electrical energy, Systems and Automation, Ghent University, Ghent, Belgium

This paper presents a novel concept of modeling biological systems by means of preserving the natural rules governing the system's dynamics, i.e., their intrinsic fractal (recurrent) structure. The purpose of this paper is to illustrate the capability of recurrent ladder networks to capture the intrinsic recurrent anatomy of neural networks and to provide a dynamic model which shows typical neuronal phenomena, such as the phase constancy. As an illustrating example, the simplified model for a neural network consisting of motor neurons is used in simulation of a recurrent ladder network. Starting from a generalized approach, it is shown that, in the steady state, the result converges to a constant-phase behavior. The outcome of this paper indicates that the proposed model is a suitable tool for specific neural models in various neuroscience applications, being able to capture their fractal structure and the corresponding fractal dynamic behavior. A link to the dynamics of EEG activity is suggested. By studying specific neural populations by means of the ladder network model presented in this paper, one might be able to understand the changes observed in the EEG with normal aging or with neurodegenerative disorders.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:42 ,  Issue: 6 )