By Topic

An Integrated Segmentation and Analysis Approach for QCT of the Knee to Determine Subchondral Bone Mineral Density and Texture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Zerfass, P. ; Institute of Medical Physics, University of Erlangen-Nuernberg, Germany ; Lowitz, T. ; Museyko, O. ; Bousson, V.
more authors

We have developed a new integrated approach for quantitative computed tomography of the knee in order to quantify bone mineral density (BMD) and subchondral bone structure. The present framework consists of image acquisition and reconstruction, 3-D segmentation, determination of anatomic coordinate systems, and reproducible positioning of analysis volumes of interest (VOI). Novel segmentation algorithms were developed to identify growth plates of the tibia and femur and the joint space with high reproducibility. Five different VOIs with varying distance to the articular surface are defined in the epiphysis. Each VOI is further subdivided into a medial and a lateral part. In each VOI, BMD is determined. In addition, a texture analysis is performed on a high-resolution computed tomography (CT) reconstruction of the same CT scan in order to quantify subchondral bone structure. Local and global homogeneity, as well as local and global anisotropy were measured in all VOIs. Overall short-term precision of the technique was evaluated using double measurements of 20 osteoarthritic cadaveric human knees. Precision errors for volume were about 2–3% in the femur and 3–5% in the tibia. Precision errors for BMD were about 1–2% lower. Homogeneity parameters showed precision errors up to about 2% and anisotropy parameters up to about 4%.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 9 )