By Topic

Raw Material Classification by Means of Hyperspectral Imaging and Hierarchical Temporal Memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Luis Rodriguez-Cobo ; Photonics Engineering Group, Universidad de Cantabria, Santander, Spain ; P. Beatriz Garcia-Allende ; Adolfo Cobo ; José Miguel Lopez-Higuera
more authors

The recently proposed hierarchical temporal memory (HTM) paradigm of soft computing is applied to the detection and classification of foreign materials in a conveyor belt carrying tobacco leaves in a cigarette manufacturing industry. The HTM has been exposed to hyperspectral imaging data from 10 types of unwanted materials intermingled with tobacco leaves. The impact of the HTM architecture and the configuration of internal parameters on its classification performance have been explored. Classification results match or surpass those attained with other methods, such as Artificial Neural Networks (ANNs), with the advantage that HTM are able to handle raw spectral data and no preprocessing, spectral compression, or reflectance correction is required. It is also demonstrated that an optimized configuration of the HTM architecture and internal values can be derived from the statistical properties of the hyperspectral data, allowing the extension of the approach to other classification problems.

Published in:

IEEE Sensors Journal  (Volume:12 ,  Issue: 9 )