Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Two fast and high-associativity cache schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chenxi Zhang ; Changsha Inst. of Technol., Hunan, China ; Xiaodong Zhang ; Yong Yan

In the race to improve cache performance, many researchers have proposed schemes that increase a cache's associativity. The associativity of a cache is the number of places in the cache where a block may reside. In a direct-mapped cache, which has an associativity of 1, there is only one location to search for a match for each reference. In a cache with associativity n-an n-way set-associative cache-there are n locations. Increasing associativity reduces the miss rate by decreasing the number of conflict, or interference, references. The column-associative cache and the predictive sequential associative cache seem to have achieved near-optimal performance for an associativity of two. Increasing associativity beyond two, therefore, is one of the most important ways to further improve cache performance. We propose two schemes for implementing associativity greater than two: the sequential multicolumn cache, which is an extension of the column-associative cache, and the parallel multicolumn cache. For an associativity of four, they achieve the low miss rate of a four-way set-associative cache. Our simulation results show that both schemes can effectively reduce the average access time

Published in:

Micro, IEEE  (Volume:17 ,  Issue: 5 )