By Topic

Analysis of arbitrary profiles by implementation of integral equation eigenvalue analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. E. Sader ; Sch. of Electr. Eng. & Comput. Sci., New South Wales Univ., Sydney, NSW, Australia

A semianalytical method of analysis for arbitrary circular and noncircular profiles as applicable to the scalar wave equation is presented. It has its fundamental basis in perturbation theory and incorporates Green's function and integral equation eigenvalue techniques. It requires formal solution only within the region of perturbation, resulting in the number of calculations being directly related to the range of perturbation and also uses no approximations such as those found in conventional numerical techniques, thus culminating in a powerful method of analysis possessing extremely high accuracy (<10-5%). Furthermore, methods for the analysis of two-dimensional integral equations are developed

Published in:

IEEE Journal of Quantum Electronics  (Volume:26 ,  Issue: 11 )