By Topic

Feature placement algorithms for high-variability applications in cloud environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Moens, H. ; Dept. of Inf. Technol., Ghent Univ. - IBBT, Ghent, Belgium ; Truyen, E. ; Walraven, S. ; Joosen, W.
more authors

While the use of cloud computing is on the rise, many obstacles to its adoption remain. One of the weaknesses of current cloud offerings is the difficulty of developing highly customizable applications while retaining the increased scalability and lower cost offered by the multi-tenant nature of cloud applications. In this paper we describe a Software Product Line Engineering (SPLE) approach to the modelling and deployment of customizable Software as a Service (SaaS) applications. Afterwards we define a formal feature placement problem to manage these applications, and compare several heuristic approaches to solve the problem. The scalability and performance of the algorithms is investigated in detail. Our experiments show that the heuristics scale and perform well for systems with a reasonable load.

Published in:

Network Operations and Management Symposium (NOMS), 2012 IEEE

Date of Conference:

16-20 April 2012