By Topic

Mechanism of pressure induced baseline shift in bioelectric signals measurement using wearable electrodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pengjun Xu ; Sch. of Textiles, Donghua Univ., Shanghai, China ; Xiaoming Tao ; Hao Liu ; Shanyuan Wang

In this paper, we present an objective evaluation method to study the pressure induced abrupt baseline shift in bioelectric signals measurement using textile electrodes. The evaluation was carried out on a hollow simulator, made from a Teflon tube with two pieces of filtration membranes at each end to mimic human skin, which filled with saline solution. An electrode pair was set to contact with the membranes under controllable pressure. The baseline of bioelectric signals, indicated by open circuit potential (OCP) of the electrode pair, was continuously recorded when increasing the electrode-membrane contact pressure stepwise. Electrochemical impedances of the electrode pair were also measured at each pressure step. The results shown that the OCP and impedance decreased with electrode contact pressure. Mechanism of the abrupt baseline shift was analyzed using a capacitor model which well explained this phenomenon.

Published in:

Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS International Conference on

Date of Conference:

5-7 Jan. 2012