By Topic

Risk analysis of Thalassemia using knowledge representation model: Diagnostic Bayesian Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Patcharaporn Paokanta ; College of Arts, Media and Technology, Chiang Mai University, Thailand ; Napat Harnpornchai

Bayesian Networks (BNs) is one of the most effective theoretical models applied to make medical diagnostic decisions. In particular, it has been applied to Thalassemia, which is one of the most common genetic disorders in the world. The main problems of diagnosing this disease are the complex processes for diagnosing the several types of Thalassemia which occur in Thailand. Moreover, diagnostic methods are slow and rely on expert knowledge and experience as well as expensive equipment. The advantage of BNs is that they are used to represent the diagnostic domain in the form of graphical statistical models. The propose of this paper is to construct a Diagnostic Bayesian Networks for risk analysis of Thalassemia using polychromatic model for screening each type of Thalassemia, including related variables. The model will be used to elicit and calculate the probabilities of each type of Thalassemia in future research.

Published in:

Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics

Date of Conference:

5-7 Jan. 2012