By Topic

Multi-phase air-cored tubular permanent magnet linear generator for wave energy converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gargov, N.P. ; Coll. of Eng. Math. & Phys. Sci., Univ. of Exeter, Exeter, UK ; Zobaa, A.F.

Direct driven permanent magnet linear generators (PMLGs) are an alternative solution for wave energy converters (WECs). Generally, problems such as high magnetic attraction forces between the permanent magnets and the magnetic core are associated with direct driven PMLG. To eliminate the attraction, air-cored generators can be used. They do not contain any stainless steel in either the stator or the rotor and therefore there is no magnetic attraction between the moving and the stationary parts. In this study, a novel design of multi-phase air-cored PMLG is proposed. The main advantage of the generator is the reduction in the Lorentz forces acting on the bearings by addressing the force in the direction parallel to the motion axis and elimination of cogging forces. Additionally, in the study a new system bypassing inactive coils is proposed and simulated as part of the grid integration system. The system achieves implementation of a small number of elements connected in series with the coils and hence the thermal losses in the grid integration system are reduced. All simulations are made by means of finite-element (FE) software working simultaneously with Matlab/Simulink.

Published in:

Renewable Power Generation, IET  (Volume:6 ,  Issue: 3 )