By Topic

Parasitic-Insensitive Linearization Methods for 60-GHz 90-nm CMOS LNAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Wei-Tsung Li ; Department of the Electrical Engineering and Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan ; Jeng-Han Tsai ; Hong-Yuan Yang ; Wei-Hung Chou
more authors

Two V-band low-noise amplifiers (LNAs) with excellent linearity and noise figure (NF) using 90-nm CMOS technology are demonstrated in this paper, employing parasitic-insensitive linearization topologies, i.e., cascode and common source, for comparative purposes. To improve the linearity without deteriorating the NF, the 54-69-GHz cascode LNA is linearized by the body-biased post-distortion, and the 58-65-GHz common-source LNA is linearized by the distributed derivative superposition. Using these parasitic-insensitive linearization methods at millimeter-wave frequency, the cascode LNA can achieve an IIP3 of 11 dBm and an NF of 3.78 dB at 68.5 GHz with a gain of 13.2 dB and 14.4-mW dc power. The common-source LNA has an IIP3 of 0 dBm and an NF of 4.1 dB at 64.5 GHz with a gain of 11.3 dB and 10.8-mW dc power. To the best of our knowledge, the proposed cascode LNA has up to 11-dBm IIP3 performance and the highest figure-of-merit of 156.2, among all reported V-band LNAs.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:60 ,  Issue: 8 )