By Topic

A 780 nm high-power and highly reliable laser diode with a long cavity and a thin tapered-thickness active layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Shima ; Mitsubishi Electric Corp., Hyogo, Japan ; H. Matsubara ; W. Susaki

Conventional AlGaAs laser diodes with uniform thickness active layers of various cavity lengths are investigated. It is recognized that the extension of the cavity length is effective in the improvement of the maximum output power, the temperature characteristics, and the operating life in high-temperature conditions. A 780-nm, high-power laser diode having a 350-μm-long cavity with a thin tapered-thickness active layer was fabricated. The optical power density near the mirror facets, the thermal resistance, the current density, and the carrier density were reduced by this structure. The laser emitted over 100 mW of CW (continuous-wave) output power at temperatures up to 80°C. A maximum output power level of 160 mW was achieved at room temperature. The fundamental transverse mode was confirmed at least up to 120 mW

Published in:

IEEE Journal of Quantum Electronics  (Volume:26 ,  Issue: 11 )