Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Design and Analysis of an Ultra-Wideband Automatic Self-Calibrating Upconverter in 65-nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Byoungjoong Kang ; Mixed Signal Core Design Team, Samsung Electron., Yongin, South Korea ; Jounghyun Yim ; Taewan Kim ; Sangsoo Ko
more authors

In this paper, an ultra-wideband (UWB) upconverter is proposed that has automatic self-calibrating circuits for the in-phase/quadrature mismatch correction and the local (LO) leakage suppression. The proposed self-calibrating circuits have been devised to have UWB functionality without help of the baseband processor. In addition, calibrating circuits do not need any additional analog-to-digital converter or sample-and-hold capacitors that are used to store and update the minimum power because the proposed calibrators find the solution from informations in current state. To verify the performance, the upconverter was applied to an UWB transmitter (Tx), operating from 3.1 to 4.8 GHz and from 6.3 to 9 GHz in 65-nm CMOS. The measured data shows UWB performance for the sideband rejection up to 9 GHz and the LO leakage suppression up to 5 GHz, respectively. The automatically calibrated Tx has error vector magnitude of lower than -20 dB, output 1-dB compression point of -6 dBm, LO leakage of lower than -43 dBm, and sideband suppression ratio of higher than 45 dBc with current consumption of 175 mA from a 1.2-V power supply for all supporting bands and time frequency codes defined in WiMedia UWB specifications.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 7 )