Cart (Loading....) | Create Account
Close category search window
 

A 65 nm CMOS Digital Phase Imager for Time-Resolved Fluorescence Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian Guo ; Dept. of Electr. & Comput. Eng., Tufts Univ., Medford, MA, USA ; Sonkusale, S.

This paper presents a CMOS image sensor with direct digital phase output for time-resolved fluorescence imaging applications. A row-level zero-crossing detection is implemented to extract the phase-shift between the intensity modulated excitation signal and the emitted fluorescence, generating a time delay signal proportional to the fluorescence lifetime of the target analyte. A time-interpolated Time-to-Digital Converter (TDC) is subsequently used to quantize the time delay into a digital representation of the phase-shift for post-signal processing and image reconstruction. For proof-of-concept, a prototype chip consisting of a 32×32 P+/N-Well/P-Substrate photodiode array, row-level phase readout circuits, and a global TDC is implemented in a low-power 65 nm CMOS technology. The TDC features a temporal resolution of 110 ps over a 414 μs range, which corresponds to a dynamic range of 132 dB. Extensive characterization results demonstrate a phase readout sensitivity of better than 0.01 degrees at a 1.2 kHz modulation frequency and 0.1 degrees at up to 1 MHz. The complete imager chip is evaluated through a sequence of phase image reconstruction experiments, and the results are presented.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:47 ,  Issue: 7 )

Date of Publication:

July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.