Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Image Forgery Localization via Fine-Grained Analysis of CFA Artifacts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ferrara, P. ; Nat. Inst. of Opt. (INO), Firenze, Italy ; Bianchi, T. ; De Rosa, A. ; Piva, A.

In this paper, a forensic tool able to discriminate between original and forged regions in an image captured by a digital camera is presented. We make the assumption that the image is acquired using a Color Filter Array, and that tampering removes the artifacts due to the demosaicking algorithm. The proposed method is based on a new feature measuring the presence of demosaicking artifacts at a local level, and on a new statistical model allowing to derive the tampering probability of each 2 × 2 image block without requiring to know a priori the position of the forged region. Experimental results on different cameras equipped with different demosaicking algorithms demonstrate both the validity of the theoretical model and the effectiveness of our scheme.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:7 ,  Issue: 5 )