By Topic

Outdoor Dynamic 3-D Scene Reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
HanSung Kim ; Centre for Vision, Speech, & Signal Process., Univ. of Surrey, Guildford, UK ; Guillemaut, J.-Y. ; Takai, T. ; Sarim, M.
more authors

Existing systems for 3-D reconstruction from multiple view video use controlled indoor environments with uniform illumination and backgrounds to allow accurate segmentation of dynamic foreground objects. In this paper, we present a portable system for 3-D reconstruction of dynamic outdoor scenes that require relatively large capture volumes with complex backgrounds and nonuniform illumination. This is motivated by the demand for 3-D reconstruction of natural outdoor scenes to support film and broadcast production. Limitations of existing multiple view 3-D reconstruction techniques for use in outdoor scenes are identified. Outdoor 3-D scene reconstruction is performed in three stages: 1) 3-D background scene modeling using spherical stereo image capture; 2) multiple view segmentation of dynamic foreground objects by simultaneous video matting across multiple views; and 3) robust 3-D foreground reconstruction and multiple view segmentation refinement in the presence of segmentation and calibration errors. Evaluation is performed on several outdoor productions with complex dynamic scenes including people and animals. Results demonstrate that the proposed approach overcomes limitations of previous indoor multiple view reconstruction approaches enabling high-quality free-viewpoint rendering and 3-D reference models for production.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:22 ,  Issue: 11 )