By Topic

Fractional-Order Time Series Models for Extracting the Haemodynamic Response From Functional Magnetic Resonance Imaging Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Barbé, K. ; Dept. of Fundamental Electr. & Instrum. (ELEC), Vrije Univ. Brussel, Brussels, Belgium ; Van Moer, W. ; Nagels, G.

The postprocessing of functional magnetic resonance imaging (fMRI) data to study the brain functions deals mainly with two objectives: signal detection and extraction of the haemodynamic response. Signal detection consists of exploring and detecting those areas of the brain that are triggered due to an external stimulus. Extraction of the haemodynamic response deals with describing and measuring the physiological process of activated regions in the brain due to stimulus. The haemodynamic response represents the change in oxygen levels since the brain functions require more glucose and oxygen upon stimulus that implies a change in blood flow. In the literature, different approaches to estimate and model the haemodynamic response have been proposed. These approaches can be discriminated in model structures that either provide a proper representation of the obtained measurements but provide no or a limited amount of physiological information, or provide physiological insight but lacks a proper fit to the data. In this paper, a novel model structure is studied for describing the haemodynamics in fMRI measurements: fractional models. We show that these models are flexible enough to describe the gathered data with the additional merit of providing physiological information.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 8 )