By Topic

A comparison of support vector machines and artificial neural networks for mid-term load forecasting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xinxing Pan ; Software Research Institute, Athone Institute of Technology, Ireland ; Brian Lee

Load forecasting plays a very important role in building out the smart grid, and attracts the attention of not only the researchers and engineers, but also governments. The classical method for load forecasting is to use artificial neural networks (ANN). Recently the use of support vector machines (SVM) has emerged as a hot research topic for load forecasting. In this study, in which several different experiments are executed, to compare the use of SVM and ANN for mid-term load forecasting is presented. The forecasting is mainly performed for the electrical daily load in one year. Based on the results from the experiments, a comparison between different internal ANN algorithms as well as the comparison between ANN itself and SVM is discussed, and the merits of each approach described. Also, how much effect the factors like weather and type of day have for the load prediction is analyzed.

Published in:

Industrial Technology (ICIT), 2012 IEEE International Conference on

Date of Conference:

19-21 March 2012