By Topic

Fault Current Contribution of Medium Voltage Inverter and Doubly-Fed Induction-Machine-Based Flywheel Energy Storage System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Abdel-khalik, A.S. ; Dept. of Electr. Eng., Alexandria Univ., Alexandria, Egypt ; Elserougi, A.A. ; Massoud, A.M. ; Ahmed, S.

One of the main concerns with inverter-based distributed generation (IBDG) is its negligible fault current contribution compared to synchronous generators. IBDG hardly affects fault current level, which shadows conventional protection schemes especially with a high penetration of IBDGs at high power levels and/or in island operation mode. This paper proposes a solution for IBDG in a medium voltage distribution network that allows active and adjustable IBDG fault current contribution without violating the nonoverload nature of the inverters. This is achieved by introducing a flywheel energy storage system based on a doubly-fed induction machine (DFIM) in parallel with the IBDG. Normally, the flywheel system is dedicated to power leveling; however, during faults, the flywheel DFIM storage system (FW-DFIM) has the ability to supply an exponentially decaying current to the grid. The parallel combination of the IBDG and FW-DFIM as a distributed generation (DG) unit is capable of providing a response similar to that of synchronous generators during a fault, but with additional control capability. The simulated system shows the effectiveness of the DG unit for downstream faults where it is capable of providing sufficient fault current to trigger the distribution network's protection devices when operating in island mode.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:4 ,  Issue: 1 )