By Topic

Supervised and Unsupervised Parallel Subspace Learning for Large-Scale Image Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiao-Yuan Jing ; State Key Lab. of Software Eng., Wuhan Univ., Wuhan, China ; Sheng Li ; Zhang, D. ; Jian Yang
more authors

Subspace learning is an effective and widely used image feature extraction and classification technique. However, for the large-scale image recognition issue in real-world applications, many subspace learning methods often suffer from large computational burden. In order to reduce the computational time and improve the recognition performance of subspace learning technique under this situation, we introduce the idea of parallel computing which can reduce the time complexity by splitting the original task into several subtasks. We develop a parallel subspace learning framework. In this framework, we first divide the sample set into several subsets by designing two random data division strategies that are equal data division and unequal data division. These two strategies correspond to equal and unequal computational abilities of nodes under parallel computing environment. Next, we calculate projection vectors from each subset in parallel. The graph embedding technique is employed to provide a general formulation for parallel feature extraction. After combining the extracted features from all nodes, we present a unified criterion to select most distinctive features for classification. Under the developed framework, we separately propose supervised and unsupervised parallel subspace learning approaches, which are called parallel linear discriminant analysis (PLDA) and parallel locality preserving projection (PLPP). PLDA selects features with the largest Fisher scores by estimating the weighted and unweighted sample scatter, while PLPP selects features with the smallest Laplacian scores by constructing a whole affinity matrix. Theoretically, we analyze the time complexities of proposed approaches and provide the fundamental supports for applying random division strategies. In the experiments, we establish two real parallel computing environments and employ four public image and video databases as the test data. Experimental results demonstrate that the proposed approac- es outperform several related supervised and unsupervised subspace learning methods, and significantly reduce the computational time.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:22 ,  Issue: 10 )
Biometrics Compendium, IEEE