By Topic

Modeling of Rate Error in Interferometric Fiber-Optic Gyroscopes Due to Stress Induced by Moisture Diffusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Webber, M. ; Dept. of Phys. & Dept. of Math., Northeastern Univ., Boston, MA, USA ; Willig, R. ; Rackowski, H. ; Dineen, A.

Interferometric fiber-optic gyroscopes exhibit time-dependent rate error patterns during operation due to environmental stress on the fiber coil. Short-term errors, equilibrating on the order of minutes to several hours, are attributed to nonreciprocity due to thermal gradients. Long-term rate errors, equilibrating on the order of days to weeks, have not been thoroughly addressed. In this study, we show that diffusion of moisture into or out of a sense coil can cause long-term rate errors. To calculate this effect, we measured the effect of moisture on the mechanical properties of the optical fiber coating. Using these data, we modeled diffusion in a sense coil with finite-element analysis. The rate error is calculated with an integral that is similar to that used by Shupe and others. A variation in water concentration in the coil due to diffusion causes changes in the properties of the fiber coating. This in turn produces nonreciprocal stresses on the waveguide and leads to a rate error.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 14 )