By Topic

Heterogeneous NoC Design for Efficient Broadcast-based Coherence Protocol Support

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lodde, M. ; Univ. Politec. de Valencia, Valencia, Spain ; Flich, J. ; Acacio, M.E.

Chip Multiprocessor Systems (CMPs) rely on a cache coherency protocol to maintain memory access coherence between cached data and main memory. The Hammer coherency protocol is appealing as it eliminates most of the space overhead when compared to a directory protocol. However, it generates much more traffic, thus stressing the NoC and having worse performance in terms of power consumption. When using a NoC with built-in broadcast support network utilization is lowered but does not solve completely the problem as acknowledgment messages are still sent from each core to the memory access requestor. In this paper we propose a simple control network that collects the acknowledgement messages and delivers them with a bounded and fixed latency, thus relieving the NoC from a large amount of messages. Experimental results demonstrate on a 16-tile system with the control network that execution time improves up to 17%, with an average improvement of about 7.5%. The control network has negligible impact on area when compared to the switches.

Published in:

Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium on

Date of Conference:

9-11 May 2012