Cart (Loading....) | Create Account
Close category search window

Probability-based Imputation Method for Fuzzy Cluster Analysis of Gene Expression Microarray Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thanh Le ; Dept. of Comput. Sci. & Eng., Univ. of Colorado Denver, Denver, CO, USA ; Altman, T. ; Gardiner, K.J.

Fuzzy clustering has been widely used for analysis of gene expression micro array data. However, most fuzzy clustering algorithms require complete datasets and, because of technical limitations, most micro array datasets have missing values. To address this problem, we present a new algorithm where genes are clustered using the Fuzzy C-Means algorithm, followed by approximating the fuzzy partition by a probabilistic data distribution model which is then used to estimate the missing values in the dataset. Using distribution-based approach, our method is most appropriate for datasets where the data are nonuniform. We show that our method outperforms six popular imputation algorithms on uniform and nonuniform artificial datasets as well as real datasets with unknown data distribution model.

Published in:

Information Technology: New Generations (ITNG), 2012 Ninth International Conference on

Date of Conference:

16-18 April 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.