By Topic

Reduced-Complexity LCC Reed–Solomon Decoder Based on Unified Syndrome Computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Zhang ; Sch. of Electron. Inf. Eng., Tianjin Univ., Tianjin, China ; Hao Wang ; Boyang Pan

Reed-Solomon (RS) codes are widely used in digital communication and storage systems. Algebraic soft-decision decoding (ASD) of RS codes can obtain significant coding gain over the hard-decision decoding (HDD). Compared with other ASD algorithms, the low-complexity Chase (LCC) decoding algorithm needs less computation complexity with similar or higher coding gain. Besides employing complicated interpolation algorithm, the LCC decoding can also be implemented based on the HDD. However, the previous syndrome computation for 2η test vectors and the key equation solver (KES) in the HDD requires long latency and remarkable hardware. In this brief, a unified syndrome computation algorithm and the corresponding architecture are proposed. Cooperating with the KES in the reduced inversion-free Berlekamp-Messy algorithm, the reduced-complexity LCC RS decoder can speed up by 57% and the area will be reduced to 62% compared with the original design for η = 3.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:21 ,  Issue: 5 )