By Topic

Semisupervised Learning of Hyperspectral Data With Unknown Land-Cover Classes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Goo Jun ; Biostatistics Department, University of Michigan, Ann Arbor, MI , USA ; Joydeep Ghosh

Both supervised and semisupervised algorithms for hyperspectral data analysis typically assume that all unlabeled data belong to the same set of land-cover classes that is represented by labeled data. This is not true in general, however, since there may be new classes in the unexplored regions within an image or in areas that are geographically near but topographically distinct. This problem is more likely to occur when one attempts to build classifiers that cover wider areas; such classifiers also need to address spatial variations in acquired spectral signatures if they are to be accurate and robust. This paper presents a semisupervised spatially adaptive mixture model (SESSAMM) to identify land covers from hyperspectral images in the presence of previously unknown land-cover classes and spatial variation of spectral responses. SESSAMM uses a nonparametric Bayesian framework to apply spatially adaptive mechanisms to the mixture model with (potentially) infinitely many components. In this method, each component in the mixture has spatially adapted parameters estimated by Gaussian process regression, and spatial correlations between indicator variables are also considered. The proposed SESSAMM algorithm is applied to hyperspectral data from Botswana and from the DC Mall, where some classes are present only in the unlabeled data. SESSAMM successfully differentiates unlabeled instances of previously known classes from unknown classes and provides better results than the standard Dirichlet process mixture model and other alternatives.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:51 ,  Issue: 1 )