By Topic

A Compliant Parallel XY Micromotion Stage With Complete Kinematic Decoupling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yangmin Li ; Shenzhen Grad. Sch., Sch. of Mech. Eng. & Autom., Harbin Inst. of Technol., Shenzhen, China ; Jiming Huang ; Hui Tang

This paper presents a novel compliant parallel XY micromotion stage driven by piezoelectric actuators (PZT). With the purpose to obtain complete kinematic decoupling and good stiffness performance, the stage is designed using a symmetric 4-PP structure in which double four-bar flexure is chosen as the prismatic joint. Matrix method is employed to establish the compliance model of the mechanism. Based on the model, dynamic analysis is investigated after static analysis is carried out. The dimensions of the mechanism are optimized using the particle swarm optimization (PSO) algorithm in order to maximize the natural frequencies. Finite-element analysis (FEA) result indicates that the mechanism has an almost linear force-deflection relationship, high first natural frequency (720.52 Hz), and ideal decoupling property. To cope with the nonlinearities such as hysteresis that exists in the PZT, the control system is constructed by a proportional-integral-derivative (PID) feedback controller with a feedforward compensator based on Preisach model. The fabricated prototype has a 19.2 μm × 8.8 μm rectangular workspace with coupling less than 5%. The result of the closed-loop test shows that the XY stage can achieve positioning, tracking and contouring tasks with small errors.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:9 ,  Issue: 3 )