By Topic

Concurrent tri-band GaN HEMT power amplifier using resonators in both input and output matching networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhebin Wang ; Electr. Eng., Univ. of Quebec in Rimouski, Rimouski, QC, Canada ; Chan-Wang Park

This paper presents a novel method by using resonators in both input and output matching networks to design a tri-band GaN HEMT power amplifier. Two parallel resonators in series as one frequency selection element are used for each operation frequency. By applying this frequency selection element in both input and output matching networks constructed with microstrip line, tri-band matching network is realized. With our proposed frequency selection element, we can use the conventional L-type structure to design matching network for three frequencies so that the design analysis procedure is easier. We also propose a new simplified output matching network by using bias line to match the output impedance to reduce the number of resonators. To demonstrate our method, we fabricate a tri-band power amplifier that can work at 1 GHz, 1.5 GHz, and 2.5 GHz concurrently. Experimental results show that the output power is 39.8 dBm, 40.8 dBm, and 39.2 dBm with 56.4%, 58.3%, and 43.4% power added efficiency (PAE) at 1 GHz, 1.5 GHz and 2.5 GHz, respectively.

Published in:

Wireless and Microwave Technology Conference (WAMICON), 2012 IEEE 13th Annual

Date of Conference:

15-17 April 2012