Cart (Loading....) | Create Account
Close category search window
 

A dynamic voltage scaling with single power supply and varying speed factor for multiprocessor system using genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kumar, P.R. ; ECE Dept., K.S. Rangasamy Coll. of Technol., Tiruchengode, India ; Palani, S.

With growing of applications of the embedded system technology to mobile systems, energy efficiency is becoming an important issue for designing real time embedded systems. One of the possible techniques to reduce the energy consumption is the Dynamic Voltage Scaling (DVS). DVS utilizes the slack time and adjusts the supply voltage so as to reduce the energy expense. However, how to optimally adjust the supply voltage is a NP hard problem. This paper focuses the combinational optimization problem, namely, the problem of minimizing schedule length with energy consumption constraint and the problem of minimizing energy consumption with schedule length constraint. These problems emphasize the tradeoff between power and performance and are defined such that the power-performance product is optimized by fixing one factor and minimizing the other. We propose the analytical result which gives the variation factor of each power supply which depends on the workload and provides the same power supply while meeting the constraints. We address to the use of genetic algorithm to schedule the tasks and then find the optimal power supplies and determine the schedule length on the multiprocessor system.

Published in:

Pattern Recognition, Informatics and Medical Engineering (PRIME), 2012 International Conference on

Date of Conference:

21-23 March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.