By Topic

A novel approach for nose tip detection using smoothing by weighted median filtering applied to 3D face images in variant poses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Parama Bagchi ; Dept. of Comput. Sci. & Eng., MCKV Inst. of Eng., Kolkata, India ; Mita Nasipuri ; Debotosh Bhattacharjee ; Dipak Kumar Basu

This paper is based on n application of smoothing of 3D face images followed by feature detection i.e. detecting the nose tip. The present method uses a weighted mesh median filtering technique for smoothing. In this present smoothing technique we have built the neighborhood surrounding a particular point in 3D face and replaced that with the weighted value of the surrounding points in 3D face image. After applying the smoothing technique to the 3D face images our experimental results show that we have obtained considerable improvement as compared to the algorithm without smoothing. We have used here the maximum intensity algorithm for detecting the nose-tip and this method correctly detects the nose-tip in case of any pose i.e. along X, Y, and Z axes. The present technique gave us worked successfully on 535 out of 542 3D face images as compared to the method without smoothing which worked only on 521 3D face images out of 542 face images. Thus we have obtained a 98.70% performance rate over 96.12% performance rate of the algorithm without smoothing. All the experiments have been performed on the FRAV3D database.

Published in:

Pattern Recognition, Informatics and Medical Engineering (PRIME), 2012 International Conference on

Date of Conference:

21-23 March 2012