Cart (Loading....) | Create Account
Close category search window

Image segmentation using nearest neighbor classifiers based on kernel formation for medical images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Harini, R. ; Dept. of Comput. Sci., Periyar Univ., Salem, India ; Chandrasekar, C.

Image Segmentation is one of the significant elements in the part of image processing. It becomes most essential demanding factor while typically dealing with medical image segmentation. In this paper, proposal of our work comprises of formation of kernel for the medical images by performing the deviation of mapped image data within the scope of each region from the piecewise constant model and based on the regularization term based on the function of indices value of the region. The functional objective minimization is carried out by two steps minimization in image segmentation using graph cut methods, and minimization with respect to region parameters using constant point computation. Nearest neighbor classifiers are introduced to the benchmarked image data segmented portions. Among the different methods in supervised statistical pattern recognition, the nearest neighbor rule results in achieving high performance without requirement of the prior assumptions about the distributions from which the training sets are taken.

Published in:

Pattern Recognition, Informatics and Medical Engineering (PRIME), 2012 International Conference on

Date of Conference:

21-23 March 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.