By Topic

Vegetable price prediction using data mining classification technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nasira, G.M. ; Dept. of Comput. Sci., Gov. Arts Coll. (Autonomous), Coimbatore, India ; Hemageetha, N.

Each and every sector in this digital world is undergoing a dramatic change due to the influence of IT field. The agricultural sector needs more support for its development in developing countries like India. Price prediction helps the farmers and also Government to make effective decision. Based on the complexity of vegetable price prediction, making use of the characteristics of neural networks such as self-adapt, self-study and high fault tolerance, to build up the model of Back-propagation neural network to predict vegetable price. A prediction model was set up by applying the neural network. Taking tomato as an example, the parameters of the model are analyzed through experiment. At the end of the result of Back-propagation neural network shows absolute error percentage of monthly and weekly vegetable price prediction and analyze the accuracy percentage of the price prediction.

Published in:

Pattern Recognition, Informatics and Medical Engineering (PRIME), 2012 International Conference on

Date of Conference:

21-23 March 2012