By Topic

Layer-by-layer thermal conductivities of the Group III nitride films in blue/green light emitting diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Su, Zonghui ; Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA ; Huang, Li ; Liu, Fang ; Freedman, Justin P.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Thermal conductivities (k) of the individual layers of a GaN-based light emitting diode (LED) were measured along [0001] using the 3-omega method from 100-400 K. Base layers of AlN, GaN, and InGaN, grown by organometallic vapor phase epitaxy on SiC, have effective k much lower than bulk values. The 100 nm thick AlN layer has k = 0.93 ± 0.16 W/mK at 300 K, which is suppressed >100 times relative to bulk AlN. Transmission electron microscope images revealed high dislocation densities (4 × 1010 cm-2) within AlN and a severely defective AlN-SiC interface that cause additional phonon scattering. Resultant thermal resistances degrade LED performance and lifetime making layer-by-layer k, a critical design metric for LEDs.

Published in:

Applied Physics Letters  (Volume:100 ,  Issue: 20 )