By Topic

Tag Completion for Image Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lei Wu ; Dept. of Comput. Sci., Univ. of Pittsburgh, Pittsburgh, PA, USA ; Rong Jin ; Jain, A.K.

Many social image search engines are based on keyword/tag matching. This is because tag-based image retrieval (TBIR) is not only efficient but also effective. The performance of TBIR is highly dependent on the availability and quality of manual tags. Recent studies have shown that manual tags are often unreliable and inconsistent. In addition, since many users tend to choose general and ambiguous tags in order to minimize their efforts in choosing appropriate words, tags that are specific to the visual content of images tend to be missing or noisy, leading to a limited performance of TBIR. To address this challenge, we study the problem of tag completion, where the goal is to automatically fill in the missing tags as well as correct noisy tags for given images. We represent the image-tag relation by a tag matrix, and search for the optimal tag matrix consistent with both the observed tags and the visual similarity. We propose a new algorithm for solving this optimization problem. Extensive empirical studies show that the proposed algorithm is significantly more effective than the state-of-the-art algorithms. Our studies also verify that the proposed algorithm is computationally efficient and scales well to large databases.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 3 )