By Topic

A Context-Based Word Indexing Model for Document Summarization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pawan Goyal ; INRIA Paris-Rocquencourt, Le Chesnay ; Laxmidhar Behera ; Thomas Martin McGinnity

Existing models for document summarization mostly use the similarity between sentences in the document to extract the most salient sentences. The documents as well as the sentences are indexed using traditional term indexing measures, which do not take the context into consideration. Therefore, the sentence similarity values remain independent of the context. In this paper, we propose a context sensitive document indexing model based on the Bernoulli model of randomness. The Bernoulli model of randomness has been used to find the probability of the cooccurrences of two terms in a large corpus. A new approach using the lexical association between terms to give a context sensitive weight to the document terms has been proposed. The resulting indexing weights are used to compute the sentence similarity matrix. The proposed sentence similarity measure has been used with the baseline graph-based ranking models for sentence extraction. Experiments have been conducted over the benchmark DUC data sets and it has been shown that the proposed Bernoulli-based sentence similarity model provides consistent improvements over the baseline IntraLink and UniformLink methods [1].

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:25 ,  Issue: 8 )