By Topic

Principal Composite Kernel Feature Analysis: Data-Dependent Kernel Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Motai, Y. ; Dept. of Electr. & Comput. Eng., Virginia Commonwealth Univ., Richmond, VA, USA ; Yoshida, H.

Principal composite kernel feature analysis (PC-KFA) is presented to show kernel adaptations for nonlinear features of medical image data sets (MIDS) in computer-aided diagnosis (CAD). The proposed algorithm PC-KFA has extended the existing studies on kernel feature analysis (KFA), which extracts salient features from a sample of unclassified patterns by use of a kernel method. The principal composite process for PC-KFA herein has been applied to kernel principal component analysis [34] and to our previously developed accelerated kernel feature analysis [20]. Unlike other kernel-based feature selection algorithms, PC-KFA iteratively constructs a linear subspace of a high-dimensional feature space by maximizing a variance condition for the nonlinearly transformed samples, which we call data-dependent kernel approach. The resulting kernel subspace can be first chosen by principal component analysis, and then be processed for composite kernel subspace through the efficient combination representations used for further reconstruction and classification. Numerical experiments based on several MID feature spaces of cancer CAD data have shown that PC-KFA generates efficient and an effective feature representation, and has yielded a better classification performance for the proposed composite kernel subspace using a simple pattern classifier.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 8 )