By Topic

Robust Bayesian Clustering for Replicated Gene Expression Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianyong Sun ; Centre for Plant Integrative Biol. (CPIB), Univ. of Nottingham, Nottingham, UK ; Garibaldi, J.M. ; Kenobi, K.

Experimental scientific data sets, especially biology data, usually contain replicated measurements. The replicated measurements for the same object are correlated, and this correlation must be carefully dealt with in scientific analysis. In this paper, we propose a robust Bayesian mixture model for clustering data sets with replicated measurements. The model aims not only to accurately cluster the data points taking the replicated measurements into consideration, but also to find the outliers (i.e., scattered objects) which are possibly required to be studied further. A tree-structured variational Bayes (VB) algorithm is developed to carry out model fitting. Experimental studies showed that our model compares favorably with the infinite Gaussian mixture model, while maintaining computational simplicity. We demonstrate the benefits of including the replicated measurements in the model, in terms of improved outlier detection rates in varying measurement uncertainty conditions. Finally, we apply the approach to clustering biological transcriptomics mRNA expression data sets with replicated measurements.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 5 )