By Topic

Improving the Prediction of Clinical Outcomes from Genomic Data Using Multiresolution Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hennings-Yeomans, P.H. ; Dept. of Biomed. Inf., Univ. of Pittsburgh, Pittsburgh, PA, USA ; Cooper, G.F.

The prediction of patient's future clinical outcome, such as Alzheimer's and cardiac disease, using only genomic information is an open problem. In cases when genome-wide association studies (GWASs) are able to find strong associations between genomic predictors (e.g., SNPs) and disease, pattern recognition methods may be able to predict the disease well. Furthermore, by using signal processing methods, we can capitalize on latent multivariate interactions of genomic predictors. Such an approach to genomic pattern recognition for prediction of clinical outcomes is investigated in this work. In particular, we show how multiresolution transforms can be applied to genomic data to extract cues of multivariate interactions and, in some cases, improve on the predictive performance of clinical outcomes of standard classification methods. Our results show, for example, that an improvement of about 6 percent increase of the area under the ROC curve can be achieved using multiresolution spaces to train logistic regression to predict late-onset Alzheimer's disease (LOAD) compared to logistic regression applied directly on SNP data.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 5 )