Cart (Loading....) | Create Account
Close category search window
 

Gait Recognition Across Various Walking Speeds Using Higher Order Shape Configuration Based on a Differential Composition Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kusakunniran, W. ; Sch. of Comput. Sci. & Eng., Univ. of New South Wales (UNSW), Sydney, NSW, Australia ; Qiang Wu ; Jian Zhang ; Hongdong Li

Gait has been known as an effective biometric feature to identify a person at a distance. However, variation of walking speeds may lead to significant changes to human walking patterns. It causes many difficulties for gait recognition. A comprehensive analysis has been carried out in this paper to identify such effects. Based on the analysis, Procrustes shape analysis is adopted for gait signature description and relevant similarity measurement. To tackle the challenges raised by speed change, this paper proposes a higher order shape configuration for gait shape description, which deliberately conserves discriminative information in the gait signatures and is still able to tolerate the varying walking speed. Instead of simply measuring the similarity between two gaits by treating them as two unified objects, a differential composition model (DCM) is constructed. The DCM differentiates the different effects caused by walking speed changes on various human body parts. In the meantime, it also balances well the different discriminabilities of each body part on the overall gait similarity measurements. In this model, the Fisher discriminant ratio is adopted to calculate weights for each body part. Comprehensive experiments based on widely adopted gait databases demonstrate that our proposed method is efficient for cross-speed gait recognition and outperforms other state-of-the-art methods.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:42 ,  Issue: 6 )
Biometrics Compendium, IEEE

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.