By Topic

Multifeature Landmark-Free Active Appearance Models: Application to Prostate MRI Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Toth, R. ; Dept. of Biomed. Eng., Rutgers Univ., Piscataway, NJ, USA ; Madabhushi, A.

Active shape models (ASMs) and active appearance models (AAMs) are popular approaches for medical image segmentation that use shape information to drive the segmentation process. Both approaches rely on image derived landmarks (specified either manually or automatically) to define the object's shape, which require accurate triangulation and alignment. An alternative approach to modeling shape is the level-set representation, defined as a set of signed distances to the object's surface. In addition, using multiple image derived attributes (IDAs) such as gradient information has previously shown to offer improved segmentation results when applied to ASMs, yet little work has been done exploring IDAs in the context of AAMs. In this work, we present a novel AAM methodology that utilizes the level set implementation to overcome the issues relating to specifying landmarks, and locates the object of interest in a new image using a registration based scheme. Additionally, the framework allows for incorporation of multiple IDAs. Our multifeature landmark-free AAM (MFLAAM) utilizes an efficient, intuitive, and accurate algorithm for identifying those IDAs that will offer the most accurate segmentations. In this paper, we evaluate our MFLAAM scheme for the problem of prostate segmentation from T2-w MRI volumes. On a cohort of 108 studies, the levelset MFLAAM yielded a mean Dice accuracy of 88% ± 5%, and a mean surface error of 1.5 mm ± .8 mm with a segmentation time of 150/s per volume. In comparison, a state of the art AAM yielded mean Dice and surface error values of 86% ± 9% and 1.6 mm ± 1.0 mm, respectively. The differences with respect to our levelset-based MFLAAM model are statistically significant (p <; .05). In addition, our results were in most cases superior to several recent state of the art prostate MRI segmentation methods.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 8 )