By Topic

Shape based learning for a multi-template method, and its application to handprinted numeral recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yamauchi, T. ; Div. of Ind. Autom., NEC Corp., Tokyo, Japan ; Itamoto, Y. ; Tsukumo, J.

Character recognition using multi-template methods is promising. Higher classification performance can be achieved according to an increase in the number of templates. However, classification performance is saturated because there is classifiability loss in feature extraction. The paper proposes a new multi-template method which learns training patterns with character shape information assigned by the authors. This method uses contour feature and direction feature, and includes a character shape consistency test applied to the conventional multi-template methods. The paper presents experimental results obtained from handprinted numerals. On the ETL-6 database classification experiment the classification rate was 99.19% and the substitution rate was 0.03%. A higher classification rate could be achieved

Published in:

Document Analysis and Recognition, 1997., Proceedings of the Fourth International Conference on  (Volume:2 )

Date of Conference:

18-20 Aug 1997