By Topic

Heteroskedasticity Variance Index

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Hassan ; Centre for Intell. Syst. Res., Deakin Univ., Melbourne, VIC, Australia ; M. Hossny ; S. Nahavandi ; D. Creighton

Time series forecasting attempts to predict future values of time series. Its work is based on studying previously observed values. A heteroskedastic time series features variable and unpredictable measures of dispersion. This uncertainty in statistical distribution parameters imposes a serious challenge to the forecasting models. There have been many attempts to identify the heteroskedasticity in time series. However, all these attempts rely on hypothesis testing and do not quantify the amount of heteroskedasticity in the examined time series. On the other hand, quantifying heteroskedasticity does provide extra information about the behavior of the time series. Studying this behavior will improve forecasting of behavioral dependent time series such as stock market data. This paper introduces a novel heteroskedasticity index based on variance of localized variances.

Published in:

Computer Modelling and Simulation (UKSim), 2012 UKSim 14th International Conference on

Date of Conference:

28-30 March 2012