Cart (Loading....) | Create Account
Close category search window
 

L_{1/2} Regularization: A Thresholding Representation Theory and a Fast Solver

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zongben Xu ; Key Lab. for Intell. Networks & Network Security, Xi'an Jiaotong Univ., Xi'an, China ; Xiangyu Chang ; Fengmin Xu ; Hai Zhang

The special importance of L1/2 regularization has been recognized in recent studies on sparse modeling (particularly on compressed sensing). The L1/2 regularization, however, leads to a nonconvex, nonsmooth, and non-Lipschitz optimization problem that is difficult to solve fast and efficiently. In this paper, through developing a threshoding representation theory for L1/2 regularization, we propose an iterative half thresholding algorithm for fast solution of L1/2 regularization, corresponding to the well-known iterative soft thresholding algorithm for L1 regularization, and the iterative hard thresholding algorithm for L0 regularization. We prove the existence of the resolvent of gradient of ||x||1/21/2, calculate its analytic expression, and establish an alternative feature theorem on solutions of L1/2 regularization, based on which a thresholding representation of solutions of L1/2 regularization is derived and an optimal regularization parameter setting rule is formulated. The developed theory provides a successful practice of extension of the well- known Moreau's proximity forward-backward splitting theory to the L1/2 regularization case. We verify the convergence of the iterative half thresholding algorithm and provide a series of experiments to assess performance of the algorithm. The experiments show that the half algorithm is effective, efficient, and can be accepted as a fast solver for L1/2 regularization. With the new algorithm, we conduct a phase diagram study to further demonstrate the superiority of L1/2 regularization over L1 regularization.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 7 )

Date of Publication:

July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.