Cart (Loading....) | Create Account
Close category search window

Effective Acquaintance Management based on Bayesian Learning for Distributed Intrusion Detection Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fung, C.J. ; Dept. of Comput. Sci., Univ. of Waterloo, Waterloo, ON, Canada ; Jie Zhang ; Boutaba, R.

An effective Collaborative Intrusion Detection Network (CIDN) allows distributed Intrusion Detection Systems (IDSes) to collaborate and share their knowledge and opinions about intrusions, to enhance the overall accuracy of intrusion assessment as well as the ability of detecting new classes of intrusions. Toward this goal, we propose a distributed Host-based IDS (HIDS) collaboration system, particularly focusing on acquaintance management where each HIDS selects and maintains a list of collaborators from which they can consult about intrusions. Specifically, each HIDS evaluates both the false positive (FP) rate and false negative (FN) rate of its neighboring HIDSes' opinions about intrusions using Bayesian learning, and aggregates these opinions using a Bayesian decision model. Our dynamic acquaintance management algorithm allows each HIDS to effectively select a set of collaborators. We evaluate our system based on a simulated collaborative HIDS network. The experimental results demonstrate the convergence, stability, robustness, and incentive-compatibility of our system.

Published in:

Network and Service Management, IEEE Transactions on  (Volume:9 ,  Issue: 3 )

Date of Publication:

September 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.