By Topic

Identifying coronary stenosis using an image-recognition neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. C. Goodenday ; Med. Coll. of Ohio, Toledo, OH, USA ; K. J. Cios ; Inho Shin

The present study represents an attempt to improve the separation of specific high-risk coronary stenosis from lower-risk conditions by employing an image-recognition neural network. The system mimics the visual reading of scintigraphs from raw digitized data, with the added benefit of a computerized classification system. It models the human retina as the sensing organ that processes the image signals and forwards them to the brain, where the outputs from each visual segment are processed to produce a recognition code. In the application described here, the recognition code classifies a scintigraphic image as demonstrating normal myocardial perfusion, or a perfusion pattern consistent with single-vessel, multiple-vessel, or left-anterior descending coronary artery stenosis. The input images are from clinically performed postexercise planar myocardial perfusion scintigraphs as produced in many clinical laboratories.

Published in:

IEEE Engineering in Medicine and Biology Magazine  (Volume:16 ,  Issue: 5 )