By Topic

An edge detection technique using hybrid Ant Colony Optimization-genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gulum, T.O. ; Elektron. ve Haberlesme Muhendisligi Bolumu, Yildiz Tek. Univ., Istanbul, Turkey ; Erdogan, A.Y. ; Yildirim, T.

In this paper, an image edge detection technique based on the ant colony system (ACS) is implemented. ACS is one of the many ant algorithms of Ant Colony Optimization (ACO). The number of artificial ants, the total step number for each ant and the size of ant memory used in ACS is determined by applying genetic algorithm. Several reproductions of input image are obtained by nonlinear contrast enhancement applied to the input image. More than one image is passed through ACS and the outputs are integrated onto each other to generate one output image. A global threshold is applied to this very last image in order to obtain binary edge image.

Published in:

Signal Processing and Communications Applications Conference (SIU), 2012 20th

Date of Conference:

18-20 April 2012