By Topic

Interpolation Volume Calibration: A Multisensor Calibration Technique for Electromagnetic Trackers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Himberg, H. ; Polhemus, Inc., Colchester, VT, USA ; Motai, Y. ; Bradley, A.

AC electromagnetic trackers are well suited for head tracking but are adversely affected by conductive and ferromagnetic materials. Tracking performance can be improved by mapping the tracking volume to produce coefficients that correct position and orientation (PnO) measurements caused by stationary distorting materials. The mapping process is expensive and time consuming, requiring complicated high-precision equipment to provide registration of the measurements to the source reference frame. In this study, we develop a new approach to mapping that provides registration of mapping measurements without precision equipment. Our method, i.e., the interpolation volume calibration system, uses two simple fixtures, each with multiple sensors in a rigid geometry, to determine sensor PnO in a distorted environment without mechanical measurements or other tracking technologies. We test our method in a distorted tracking environment, constructing a lookup table of the magnetic field that is used as the basis for distortion compensation. The new method compares favorably with the traditional approach providing a significant reduction in cost and effort.

Published in:

Robotics, IEEE Transactions on  (Volume:28 ,  Issue: 5 )