By Topic

Upper Bounds on the Capacities of Noncontrollable Finite-State Channels With/Without Feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiujie Huang ; Department of Electronic and Communication Engineering, Sun Yat-sen University, Guangzhou, China ; Aleksandar Kavcic ; Xiao Ma

Noncontrollable finite-state channels (FSCs) are FSCs in which the channel inputs have no influence on the channel states, i.e., the channel states evolve freely. Since single-letter formulas for the channel capacities are rarely available for general noncontrollable FSCs, computable bounds are usually utilized to numerically bound the capacities. In this paper, we take the delayed channel state as part of the channel input and then define the directed information rate from the new channel input (including the source and the delayed channel state) sequence to the channel output sequence. With this technique, we derive a series of upper bounds on the capacities of noncontrollable FSCs with/without feedback. These upper bounds can be achieved by conditional Markov sources and computed by solving an average reward per stage stochastic control problem (ARSCP) with a compact state space and a compact action space. By showing that the ARSCP has a uniformly continuous reward function, we transform the original ARSCP into a finite-state and finite-action ARSCP that can be solved by a value iteration method. Under a mild assumption, the value iteration algorithm is convergent and delivers a near-optimal stationary policy and a numerical upper bound.

Published in:

IEEE Transactions on Information Theory  (Volume:58 ,  Issue: 8 )